Thermodynamics and fractional Fokker-Planck equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Fokker-Planck equation, solution, and application.

Recently, Metzler et al. [Phys. Rev. Lett. 82, 3563 (1999)], introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of an integral transformation. The transformation maps the solution of ordi...

متن کامل

Generalized Stochastic Fokker-Planck Equations

We consider a system of Brownian particles with long-range interactions. We go beyond the mean field approximation and take fluctuations into account. We introduce a new class of stochastic Fokker-Planck equations associated with a generalized thermodynamical formalism. Generalized thermodynamics arises in the case of complex systems experiencing small-scale constraints. In the limit of short-r...

متن کامل

Parameters of the fractional Fokker-Planck equation

We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavytailed increments, and the transition probability density of the noise generating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability de...

متن کامل

Phi-entropy inequalities and Fokker-Planck equations

We present new Φ-entropy inequalities for diffusion semigroups under the curvature-dimension criterion. They include the isoperimetric function of the Gaussian measure. Applications to the long time behaviour of solutions to Fokker-Planck equations are given.

متن کامل

Fokker–Planck equation with fractional coordinate derivatives

Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2001

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.63.056111